
Sia Load Test Plan
Status​: Complete, final (2018-02-14)
Author​: Michael Lynch, blogger at ​SpaceDuck
Reviewers

● Luke Champine, CTO of ​Nebulous

Objective
Determine the maximum renter storage capacity of a single Sia node.

Background
The Sia community does not have empirical data about how much data a single Sia node can
rent. Several Sia users have uploaded data to Sia, but nobody has published results of a
rigorous experiment to determine Sia’s limits.

An accurate estimate of Sia’s per-node capabilities will help the community understand the
actual costs of storage on Sia, and will help third-party developers build solutions on top of Sia.

Test Environment
I will perform this test using consumer PC hardware in my home. 1

Sia will run on a Windows 10 PC. Data files for for the test will be stored on a Synology NAS
device.

PC
● OS: Windows 10 x64
● CPU: Intel i7-5820K @ 3.3 GHz
● RAM: 32 GB
● Disk: 512 GB SSD

NAS
● Synology DS412+
● 4 TB free space

1 See ​Appendix A: Rationale for using home infrastructure

https://blog.spaceduck.io/
https://sia.tech/about

Network
● Local network: 1 Gbps
● Internet: Verizon FiOS

○ Advertised: 940 Mbps download, 880 Mbps upload
○ Actual​: 300-600 Mbps download, 8-175 Mbps upload

Sia
● Build: 1.3.1-windows-amd64 (release build)

Sia Configuration
It is important to reset state between tests so that there is no cross test contamination. Between
test cases, I will wipe all Sia data except for two files:

● consensus/consensus.db

○ This takes a very long time to sync and does not contain any node-specific state.
I will not delete this file between tests.

● renter/hostdb.json

○ It takes several days for the host database to stabilize. Instead of reusing it
across tests, I will snapshot it before tests begin, then use the snapshot copy in
each testcase.

For each test, the Sia node will start with a fresh wallet. Between tests, I will delete all Sia data
folders except for the ​consensus​ folder, which I will reuse across tests for convenience. I
believe there is a low risk of cross-test contamination from re-using the ​consensus ​folder.

I will initialize each wallet with a newly generated seed, funded with 5 KS.

Renter Prices (estimated):
 Fees for Creating a Set of Contracts: 98.7 SC
 Download 1 TB: 18.89 SC
 Store 1 TB for 1 Month: 133.9 SC
 Upload 1 TB: 27.6 SC

Sia renter price estimates, as of 2018-01-13.

The wallet amount is based on an upper limit of uploading 10 TB of data for a three month
contract:

98.7 + (27.6 * 10) + (133.9 * 10 * 3) = 4391.7 SC

https://imgur.com/GkQh1gL

I round this 4391.7 SC up to 5 KS to add a bit of buffer if renter prices change between the test
plan and the test execution.

The test script will call the ​/renter​ POST API , specifying ​funds​ to the full wallet balance 2

amount and ​period ​to ​(4320 * 3)​ blocks. The load test will begin when the Sia node creates 3

50 renter contracts. 4

Test Format
A Python script (using ​pysia​) will perform each of the tests. The script will continue uploading
files from the test dataset until either:

● The script uploads 10 TB of files (30 TB after 3x redundancy)
● Uploads stop making progress.

○ “Progress” here is defined by uploading >= 1.257 GiB of data in aggregate over
the past hour (equivalent to maintaining 3 Mbps average upload bandwidth). 5

The script will not begin uploading a new file until < 5 uploads are in progress. An upload is
considered “in progress” if the ​/renter/files​ API returns a value < 100 for the file’s 6

uploadprogress ​property.

If the tests exhaust the free space of the NAS, I will manually delete already uploaded files,
generate additional data files, and continue the test script.

If the siad process crashes or becomes unresponsive to RPCs, I will manually restart it up to 5
times per testcase. After 5 crashes or hangs, the test is considered complete. I will otherwise
not restart the siad process.

Note that this test does ​not ​exercise download functionality. I assume that files uploaded
successfully can be downloaded with their integrity preserved.

2 ​/renter API documentation
3 This mirrors ​Sia-UI’s behavior​.
4 ​Constant in source code
5 3 Mbps is the minimum speed required to meet the FCC’s definition of broadband upload. I am using it
as the threshold below which Sia has stopped making meaningful upload progress.
6 ​/renter/files API documentation

https://github.com/jnmclarty/pysia
https://github.com/NebulousLabs/Sia/blob/master/doc/api/Renter.md#query-string-parameters
https://github.com/NebulousLabs/Sia-UI/blob/8c4b271fd29066c4beccade1274715ef32c4cb6d/plugins/Files/js/sagas/helpers.js#L7-L9
https://github.com/NebulousLabs/Sia/blob/a17f213edb1339d187e8df888b4d3b99cde47c9b/node/api/renter.go#L27
https://github.com/NebulousLabs/Sia/blob/master/doc/api/Renter.md#renterfiles-get

Test Cases

1. Optimal Case
Data consists of files exactly 41942760 bytes (~40 MiB) in size, filled with random data.

This is optimal size for Sia, as each file will be exactly one full data chunk in Sia:

● chunkSize = pieceSize * dataPieces (​source​)
○ pieceSize = SectorSize - TwofishOverhead (​source​)
○ pieceSize = 2​22​ (​source​) - ​28​ (​source​)
○ pieceSize = 4194276 (~4.2 MB)

○ dataPieces = 10 (​source​)

● chunkSize = 4194276 * 10
● chunkSize = 41942760 bytes (~40 Mib)

2. Worst Case
Data consists of files 1 byte in size.

3. Actual Data
Data consists of 4.33 TB of actual DVD/Blu-Ray data (raw ISOs and compressed mp4s). Files
range in size from ~100 MB to as large as 48 GB.

Outputs
At the end of the test, I will publish:

● Source code of load test script
○ I will publish this to my personal Github, under the MIT license.
○ The repository will include everything needed for another party to reproduce my

results or extend the code, including:
■ Documentation
■ Unit tests
■ A ​Travis CI​ configuration

● Result report
○ I will publish a report on a public website detailing the results of this test.

https://github.com/NebulousLabs/Sia/blob/049919b8e84b1db8571e448645bb272b0945bae1/modules/renter/files.go#L68
https://github.com/NebulousLabs/Sia/blob/049919b8e84b1db8571e448645bb272b0945bae1/modules/renter/upload.go#L46
https://github.com/NebulousLabs/Sia/blob/c6c5ce2d1e4969f00c5eff7e306e2e72aae094b7/modules/negotiate.go#L171
https://github.com/NebulousLabs/Sia/blob/678e8ce422f76aaf94665a1206f521bc0a684d67/crypto/encrypt.go#L18
https://github.com/NebulousLabs/Sia/blob/678e8ce422f76aaf94665a1206f521bc0a684d67/crypto/encrypt.go#L18
https://github.com/NebulousLabs/Sia/blob/049919b8e84b1db8571e448645bb272b0945bae1/modules/renter/upload.go#L21
https://travis-ci.org/

○ For each testcase, the report will include:
■ Total amount of data uploaded
■ Total cost (in SC and USD equivalent)
■ All log files
■ The ending API output for relevant modules:

● /renter

● /renter/contracts

● /renter/files

● /renter/prices

● /wallet

■ Notable events that occurred during the test (e.g., crashes, unexpected
log messages).

Timeline
Coding begins 2018-02-02. Outputs published by 2018-02-16.

Appendix A: Rationale for using home infrastructure
A “pure” test would occur on cloud infrastructure, such as Amazon EC2 or Google Compute
Engine. This would aid in reproducibility and measurement because it would eliminate some
sources of interference that happen in a home, such as competing network activity (e.g.
watching streaming 4K video on the same connection while the test runs).

Despite this, I chose to use home infrastructure because:

● Cost of cloud infrastructure is prohibitive
○ On AWS, the cost of bandwidth alone is $92 per TB transferred out. These tests

can generate up to 30 TB of bandwidth, which would cost almost $3,000.
○ There are unmetered VPS offerings outside of EC2/GCE/Azure, but we still have

the nontrivial problem of storing several terabytes of data for the test.
● I consider the chances of interference to be low

○ We are not measuring throughput, so changes to available RAM, CPU, or
network bandwidth within the test environment should not affect the results of the
test.

https://github.com/NebulousLabs/Sia/blob/master/doc/API.md#renter-get
https://github.com/NebulousLabs/Sia/blob/master/doc/api/Renter.md#json-response-1
https://github.com/NebulousLabs/Sia/blob/master/doc/api/Renter.md#renterfiles-get
https://github.com/NebulousLabs/Sia/blob/master/doc/API.md#renterprices-get
https://github.com/NebulousLabs/Sia/blob/master/doc/API.md#wallet-get

